Advertisement

**Yes, number 60 is a composite number.**- Sixty is a composite number, because it has more divisors than 1 and itself.

- No the number 60 is not a prime number.

- The prime factors of number 60 are: 2, 3, 5
- Equcation for number sixty factorization is: 2 * 2 * 3 * 5

- So, if n > 0 is an integer and there are integers 1 < a, b < n such that n = a * b, then n is composite. By definition, every integer greater than one is either a prime number or a composite number. The number one is a unit, it is neither prime nor composite. For example, the integer 14 is a composite number because it can be factored as 2 * 7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one and itself.
- Every composite number can be written as the product of two or more (not necessarily distinct) primes, for example, the composite number 299 can be written as 13 * 23, and that the composite number 360 can be written as 23 * 32 * 5; furthermore, this representation is unique up to the order of the factors. This is called the fundamental theorem of arithmetic.

- Is 60 A Prime Number?
- Prime Factorization Of 60
- Prime Factors Of 60
- Is 60 An Even Number?
- Is 60 An Odd Number?
- Square Root Of 60?

**About Number 6.**Six is the smallest composite number with two distinct prime factors, and the third triangular number. It is the smallest perfect number: 6 = 1 + 2 + 3 and the faculty of 3 is 6 = 3! = 1 * 2 * 3, which is remarkable, because there is no other three numbers whose product is equal to their sum. Similarly 6 = sqrt(1 ^ 3 + 2 + 3 ^ 3 ^ 3). The equation x ^ 3 + Y ^ 3 ^ 3 + z = 6xyz is the only solution (without permutations) x = 1, y = 2 and z = 3. Finally 1/1 = 1/2 + 1/3 + 1/6. The cube (from the Greek) or hexahedron (from Latin) cube is one of the five Platonic solids and has six equal areas. A tetrahedron has six edges and six vertices an octahedron. With regular hexagons can fill a plane without gaps. Number six is a two-dimensional kiss number.**About Number 0.**The number zero is the number of elements in an empty collection of objects, mathematically speaking, the cardinality of the empty set. Zero in mathematics by depending on the context variously defined objects, but often can be identified with each other, that is considered to be the same object, which combines several properties compatible with each other. As cardinal numbers (number of elements in a set) are identified with special ordinals, and the zero is just the smallest cardinal number is zero - elected as the first ordinal - in contrast to common parlance. As finite cardinal and ordinal it is depending on the definition often counted among the natural numbers. The zero is the identity element for addition in many bodies, such as the rational numbers, real numbers and complex numbers, and a common name for a neutral element in many algebraic structures, even if other elements are not identified with common numbers. Zero is the only real number that is neither positive nor negative.

A composite number is a positive integer that has at least one positive divisor other than one or the number itself. In other words, a composite number is any integer greater than one that is not a prime number.

A composite number (or simply a composite) is a natural number, that can be found by multiplying prime numbers. For example, the number 9 can be found by multiplying 3 by 3, and the number 12. You get it by multiplying 3, 2 and 2. All natural numbers (greater than 1) can be put in one of the two classes. Either the number is prime. Or the number is not prime. It can be found by multiplying together other primes. The same prime number can be used several times, as in the example with 12 above. This is known as the fundamental theorem of arithmetic.

A composite number (or simply a composite) is a natural number, that can be found by multiplying prime numbers. For example, the number 9 can be found by multiplying 3 by 3, and the number 12. You get it by multiplying 3, 2 and 2. All natural numbers (greater than 1) can be put in one of the two classes. Either the number is prime. Or the number is not prime. It can be found by multiplying together other primes. The same prime number can be used several times, as in the example with 12 above. This is known as the fundamental theorem of arithmetic.