Advertisement

**Simplified Cube Root for ∛88 is 2∛11**- Step by step simplification process to get cube roots radical form and derivative:
- First we will find all factors under the cube root: 88 has the cube factor of 8.
- Let's check this with ∛8*11=∛88. As you can see the radicals are not in their simplest form.
- Now extract and take out the cube root ∛8 * ∛11. Cube of ∛8=2 which results into 2∛11
- All radicals are now simplified. The radicand no longer has any cube factors.

- The cubed root of eighty-eight ∛88 = 4.4479601811386

- The process of cubing is similar to squaring, only that the number is multiplied three times instead of two. The exponent used for cubes is 3, which is also denoted by the superscript³. Examples are 4³ = 4*4*4 = 64 or 8³ = 8*8*8 = 512.
- The cubic function is a one-to-one function. Why is this so? This is because cubing a negative number results in an answer different to that of cubing it's positive counterpart. This is because when three negative numbers are multiplied together, two of the negatives are cancelled but one remains, so the result is also negative. 7³ = 7*7*7 = 343 and (-7)³ = (-7)*(-7)*(-7) = -343. In the same way as a perfect square, a perfect cube or cube number is an integer that results from cubing another integer. 343 and -343 are examples of perfect cubes.

- Is 88 A Prime Number?
- Prime Factorization Of 88
- Is 88 A Composite Number?
- Is 88 An Even Number?
- Is 88 An Odd Number?
- Prime Factors Of 88
- Square Root Of 88?

**About Number 8.**The octahedron is one of the five platonic bodies. A polygon with eight sides is an octagon. In computer technology we use a number system on the basis of eight, the octal system. Eight is the first real cubic number, if one disregards 1 cube. It is also the smallest composed of three prime number. Every odd number greater than one, raised to the square, resulting in a multiple of eight with a remainder of one. The Eight is the smallest Leyland number.

In arithmetic and algebra, the cube of a number n is its third power: the result of the number multiplied by itself twice: n³ = n * n * n. It is also the number multiplied by its square: n³ = n * n².

This is also the volume formula for a geometric cube with sides of length n, giving rise to the name. The inverse operation of finding a number whose cube is n is called extracting the cube root of n. It determines the side of the cube of a given volume. It is also n raised to the one-third power.

Both cube and cube root are odd functions: (-n)³ = -(n³). The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2³ = 8 or (x + 1)³.

This is also the volume formula for a geometric cube with sides of length n, giving rise to the name. The inverse operation of finding a number whose cube is n is called extracting the cube root of n. It determines the side of the cube of a given volume. It is also n raised to the one-third power.

Both cube and cube root are odd functions: (-n)³ = -(n³). The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2³ = 8 or (x + 1)³.