Advertisement

**The prime factors of number 64 are: 2**- Determined equcation for number 64 factorization is: 2 * 2 * 2 * 2 * 2 * 2

- No the number 64 is not a prime number.
- Sixty-four is a
__composite number__. Because 64 has more divisors than 1 and itself.

- How do you calculate natural number factors? To get the number that you are factoring just multiply whatever number in the set of whole numbers with another in the same set. For example 7 has two factors 1 and 7. Number 6 has four factors 1, 2, 3 and 6 itself.
- It is simple to factor numbers in a natural numbers set. Because all numbers have a minimum of two factors(one and itself). For finding other factors you will start to divide the number starting from 2 and keep on going with dividers increasing until reaching the number that was divided by 2 in the beginning. All numbers without remainders are factors including the divider itself.
- Let's create an example for factorization with the number nine. It's not dividable by 2 evenly that's why we skip it(Remembe 4,5 so you know when to stop later). Nine can be divided by 3, now add 3 to your factors. Work your way up until you arrive to 5 (9 divided by 2, rounded up). In the end you have 1, 3 and 9 as a list of factors.

Prime numbers or primes are natural numbers greater than 1 that are only divisible by 1 and with itself. The number of primes is infinite. Natural numbers bigger than 1 that are not prime numbers are called composite numbers.

- In number theory, the prime factors of a positive integer are the prime numbers that divide that integer exactly. The prime factorization of a positive integer is a list of the integer's prime factors, together with their multiplicities. The process of determining these factors is called integer factorization. The fundamental theorem of arithmetic says that every positive integer has a single unique prime factorization.